RT-IoT2022
About
The RT-IoT2022, a proprietary dataset derived from a real-time IoT infrastructure, is introduced as a comprehensive resource integrating a diverse range of IoT devices and sophisticated network attack methodologies. This dataset encompasses both normal and adversarial network behaviours, providing a general representation of real-world scenarios.
Incorporating data from IoT devices such as ThingSpeak-LED, Wipro-Bulb, and MQTT-Temp, as well as simulated attack scenarios involving Brute-Force SSH attacks, DDoS attacks using Hping and Slowloris, and Nmap patterns, RT-IoT2022 offers a detailed perspective on the complex nature of network traffic. The bidirectional attributes of network traffic are meticulously captured using the Zeek network monitoring tool and the Flowmeter plugin. Researchers can leverage the RT-IoT2022 dataset to advance the capabilities of Intrusion Detection Systems (IDS), fostering the development of robust and adaptive security solutions for real-time IoT networks.
Variables Info:
Column Details:
id.orig_p
id.resp_p
proto
service
flow_duration
fwd_pkts_tot
bwd_pkts_tot
fwd_data_pkts_tot
bwd_data_pkts_tot
fwd_pkts_per_sec
bwd_pkts_per_sec
flow_pkts_per_sec
down_up_ratio
fwd_header_size_tot
fwd_header_size_min
fwd_header_size_max
bwd_header_size_tot
bwd_header_size_min
bwd_header_size_max
flow_FIN_flag_count
flow_SYN_flag_count
flow_RST_flag_count
fwd_PSH_flag_count
bwd_PSH_flag_count
flow_ACK_flag_count
fwd_URG_flag_count
bwd_URG_flag_count
flow_CWR_flag_count
flow_ECE_flag_count
fwd_pkts_payload.min
fwd_pkts_payload.max
fwd_pkts_payload.tot
fwd_pkts_payload.avg
fwd_pkts_payload.std
bwd_pkts_payload.min
bwd_pkts_payload.max
bwd_pkts_payload.tot
bwd_pkts_payload.avg
bwd_pkts_payload.std
flow_pkts_payload.min
flow_pkts_payload.max
flow_pkts_payload.tot
flow_pkts_payload.avg
flow_pkts_payload.std
fwd_iat.min
fwd_iat.max
fwd_iat.tot
fwd_iat.avg
fwd_iat.std
bwd_iat.min
bwd_iat.max
bwd_iat.tot
bwd_iat.avg
bwd_iat.std
flow_iat.min
flow_iat.max
flow_iat.tot
flow_iat.avg
flow_iat.std
payload_bytes_per_second
fwd_subflow_pkts
bwd_subflow_pkts
fwd_subflow_bytes
bwd_subflow_bytes
fwd_bulk_bytes
bwd_bulk_bytes
fwd_bulk_packets
bwd_bulk_packets
fwd_bulk_rate
bwd_bulk_rate
active.min
active.max
active.tot
active.avg
active.std
idle.min
idle.max
idle.tot
idle.avg
idle.std
fwd_init_window_size
bwd_init_window_size
fwd_last_window_size
Attack_type
Class labels:
The Dataset contains both Attack patterns and Normal Patterns.
Attacks patterns Details:
1. DOS_SYN_Hping------------------------94659
2. ARP_poisioning--------------------------7750
3. NMAP_UDP_SCAN--------------------2590
4. NMAP_XMAS_TREE_SCAN--------2010
5. NMAP_OS_DETECTION-------------2000
6. NMAP_TCP_scan-----------------------1002
7. DDOS_Slowloris------------------------534
8. Metasploit_Brute_Force_SSH---------37
9. NMAP_FIN_SCAN---------------------28
Normal Patterns Details:
1. MQTT -----------------------------------8108
2. Thing_speak-----------------------------4146
3. Wipro_bulb_Dataset-------------------253
4. Amazon-Alexa -----------------------86842
Subject Area
Engineering
Instances
123,117
Features
84
Data Types
Tabular, Sequential, Multivariate
Tasks
Classification, Regression, Clustering
Feature Types
Continuous, Categorical
Features
Name | Role | Type | Units | Missing Values |
---|---|---|---|---|
id.orig_p | Feature | Integer | - | No |
id.resp_p | Feature | Integer | - | No |
proto | Feature | Categorical | - | No |
service | Feature | Continuous | - | No |
flow_duration | Feature | Continuous | - | No |
fwd_pkts_tot | Feature | Integer | - | No |
bwd_pkts_tot | Feature | Integer | - | No |
fwd_data_pkts_tot | Feature | Integer | - | No |
bwd_data_pkts_tot | Feature | Integer | - | No |
fwd_pkts_per_sec | Feature | Continuous | - | No |
bwd_pkts_per_sec | Feature | Continuous | - | No |
flow_pkts_per_sec | Feature | Continuous | - | No |
down_up_ratio | Feature | Continuous | - | No |
fwd_header_size_tot | Feature | Integer | - | No |
fwd_header_size_min | Feature | Integer | - | No |
fwd_header_size_max | Feature | Integer | - | No |
bwd_header_size_tot | Feature | Integer | - | No |
bwd_header_size_min | Feature | Integer | - | No |
bwd_header_size_max | Feature | Integer | - | No |
flow_FIN_flag_count | Feature | Integer | - | No |
flow_SYN_flag_count | Feature | Integer | - | No |
flow_RST_flag_count | Feature | Integer | - | No |
fwd_PSH_flag_count | Feature | Integer | - | No |
bwd_PSH_flag_count | Feature | Integer | - | No |
flow_ACK_flag_count | Feature | Integer | - | No |
fwd_URG_flag_count | Feature | Integer | - | No |
bwd_URG_flag_count | Feature | Integer | - | No |
flow_CWR_flag_count | Feature | Integer | - | No |
flow_ECE_flag_count | Feature | Integer | - | No |
fwd_pkts_payload.min | Feature | Continuous | - | No |
fwd_pkts_payload.max | Feature | Continuous | - | No |
fwd_pkts_payload.tot | Feature | Continuous | - | No |
fwd_pkts_payload.avg | Feature | Continuous | - | No |
fwd_pkts_payload.std | Feature | Continuous | - | No |
bwd_pkts_payload.min | Feature | Continuous | - | No |
bwd_pkts_payload.max | Feature | Continuous | - | No |
bwd_pkts_payload.tot | Feature | Continuous | - | No |
bwd_pkts_payload.avg | Feature | Continuous | - | No |
bwd_pkts_payload.std | Feature | Continuous | - | No |
flow_pkts_payload.min | Feature | Continuous | - | No |
flow_pkts_payload.max | Feature | Continuous | - | No |
flow_pkts_payload.tot | Feature | Continuous | - | No |
flow_pkts_payload.avg | Feature | Continuous | - | No |
flow_pkts_payload.std | Feature | Continuous | - | No |
fwd_iat.min | Feature | Continuous | - | No |
fwd_iat.max | Feature | Continuous | - | No |
fwd_iat.tot | Feature | Continuous | - | No |
fwd_iat.avg | Feature | Continuous | - | No |
fwd_iat.std | Feature | Continuous | - | No |
bwd_iat.min | Feature | Continuous | - | No |
bwd_iat.max | Feature | Continuous | - | No |
bwd_iat.tot | Feature | Continuous | - | No |
bwd_iat.avg | Feature | Continuous | - | No |
bwd_iat.std | Feature | Continuous | - | No |
flow_iat.min | Feature | Continuous | - | No |
flow_iat.max | Feature | Continuous | - | No |
flow_iat.tot | Feature | Continuous | - | No |
flow_iat.avg | Feature | Continuous | - | No |
flow_iat.std | Feature | Continuous | - | No |
payload_bytes_per_second | Feature | Continuous | - | No |
fwd_subflow_pkts | Feature | Continuous | - | No |
bwd_subflow_pkts | Feature | Continuous | - | No |
fwd_subflow_bytes | Feature | Continuous | - | No |
bwd_subflow_bytes | Feature | Continuous | - | No |
fwd_bulk_bytes | Feature | Continuous | - | No |
bwd_bulk_bytes | Feature | Continuous | - | No |
fwd_bulk_packets | Feature | Continuous | - | No |
bwd_bulk_packets | Feature | Continuous | - | No |
fwd_bulk_rate | Feature | Continuous | - | No |
bwd_bulk_rate | Feature | Continuous | - | No |
active.min | Feature | Continuous | - | No |
active.max | Feature | Continuous | - | No |
active.tot | Feature | Continuous | - | No |
active.avg | Feature | Continuous | - | No |
active.std | Feature | Continuous | - | No |
idle.min | Feature | Continuous | - | No |
idle.max | Feature | Continuous | - | No |
idle.tot | Feature | Continuous | - | No |
idle.avg | Feature | Continuous | - | No |
idle.std | Feature | Continuous | - | No |
fwd_init_window_size | Feature | Integer | - | No |
bwd_init_window_size | Feature | Integer | - | No |
fwd_last_window_size | Feature | Integer | - | No |
Attack_type | Target | Categorical | - | No |
id | Id | Integer | - | No |
Introductory Paper
Quantized autoencoder (QAE) intrusion detection system for anomaly detection in resource-constrained IoT devices using RT-IoT2022 dataset
B. S. Sharmila, Rohini Nagapadma. 2023.
Cybersecurity